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Abstract

Artificial neural networks (ANNs) are relatively new computational tools and their inherent ability to learn and recognize highly
non-linear and complex relationships makes them ideally suited in solving a wide range of complex real-world problems. However,

very few is known of the use of this technique in ceramics although it is often invoked in diverse areas in chemistry. Here applica-
tion of ANN technique to model the BaTiO3 based dielectric ceramic formulation was carried through. Based on the homogenous
experimental design the experimental results of 21 samples were analyzed by a three-layer back propagation (BP) network. Through

comparison we found that the ANN model is much more accurate than conventional multiple nonlinear regression analysis
(MNLR) model for the same set of data. The results of ANN model were also expressed and analyzed by intuitive graphics. It
indicates that the three-layer BP network based modeling is a very useful tool in dealing with problems with serious non-linearity

encountered in the formulation design of dielectric ceramics. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to its temperature-stable property and harmless-
ness to the environment both in production and in appli-
cation, BaTiO3-based dielectric is now under fast
development and is commonly used as multilayer ceramic
capacitors (MLCC) of EIA X7R specification.1 In order
to satisfy different requirements and to enhance the
dielectric performance of this kind of material, addition
of different dopants is usually inevitable. Thus, the
materials often have complex ingredients and it is usually
difficult to explain the functions of the additives in the
system. The ever-increasing need to discover ceramic
formulation with good dielectric properties requires
considerable precise mathematical models in general. It
would be intractable for us to develop a reliable model-
ing for the ceramic compounding without enough
knowledge before doing the job by using a conventional
method.2 Computer modeling is becomingmore andmore
important to scientists and engineers in allowing them a
way to ‘‘picture’’ what might be happening. ANNs are
relatively new computational tools that have found

extensive utilization in solving many complex real-world
problems. The attractiveness of ANNs comes from the
remarkable information processing characteristics of the
biological system such as nonlinearity, high parallelism,
robustness, fault and failure tolerance, learning, ability
to handle imprecise and fuzzy information, and their cap-
ability to generalize.3 Artificial models possessing such
characteristics are desirable because (i) nonlinearity allows
better fit to the data, (ii) noise-insensitivity provides
accurate prediction in the presence of uncertain data
and measurement errors, (iii) high parallelism implies
fast processing and hardware failure-tolerance, (iv)
learning and adap-tivity allow the system to update
(modify) its internal structure in response to changing
environment, and (v) generalization enables application
of the model to unlearned data.4 In the past decade,
there have been numerous successful applications of
ANN technique in diversified areas of science and engi-
neering including pattern recognition and classification,
voice and image processing, prediction,5 digital com-
munications,6 and nonlinear system identification and
control.7 However, very little is known of the use of this
technique in the investigation of ceramics.
In this study ANN technique is used to model the

dielectric properties of BaTiO3 based dielectric ceramics.
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In order to compare the accuracy of this method with a
conventional method, the same set of experimental data
were also used to develop the MNLR model. Further
effort to extend this method to other functional ceramics is
continuing in the lab.

2. Fundamentals of ANN

ANNs are biologically inspired computer programs
designed to simulate the way in which the human brain
processes information. ANNs gather their knowledge
by detecting the patterns and relationships in data and
learn (or are trained) through experience, not from
programming. An ANN is formed from hundreds of
single units, artificial neurons or processing elements
(PE), connected with coefficients (weights), which con-
stitute the neural structure and are organized in layers.
The power of neural computations comes from connect-
ing neurons in a network. Each PE has weighted inputs,
transfer function and one output. The behavior of a
neural network is determined by the transfer functions of
its neurons, by the learning rule, and by the architecture
itself. The weighed sum of the inputs constitutes the
activation of the neuron. The activation signal is passed
through a transfer function to produce a single output
of the neuron. The transfer function introduces non-
linearity to the network. During training, the inter-unit
connections are optimized until the error in predictions
is minimized and the network reaches the specified level
of accuracy. Once the network is trained and tested it
can be given new input information to predict the out-
put. Although ANNs are drastic abstractions of the
biological counterparts, the idea of ANNs is not to
replicate the operation of the biological systems but to
make use of what is known about the functionality of
the biological networks for solving complex problems.4

Nielson8 had proved in 1989 that a continuous func-
tion in a closed interval must be approximated using a
three-layer feed forward network with back propaga-
tion (BP) of errors. The ANN employed here is a BP
network consisting of three layers, i.e. input layer, hid-
den layer and output layer. The input and output layers
consist of some neurons where the input information
(e.g. component%) is presented to the network and
some neurons where the response of the network (e.g.
permittivity calculated) is registered, respectively. There
is a hidden layer consisting of individual processing
units between them. Both input and hidden layers have
an additional node named bias neuron.
Processing proceeds from the input neurons to the

output neurons via the hidden neurons. Except for the
bias neuron, each of them in the network is linked with
those neurons in the adjacent layer. The bias neuron
connects only with those neurons in the upper layer.
The degree of influence is dictated by connection weight

being adjusted during training. Key steps for calcula-
tions performed in the network can be summarized as
follows:
(1) Input some data xi to the neurons in the input layer.
(2) Calculate the outputs from the hidden layer by the

transfer Eqs. (1) and (2):

yi ¼
X

wijxi þ � ð1Þ

Hj ¼ 1=½1þ expð��yjÞ� ð2Þ

where wij is the connection weight between the neurons i
and j, � is the bias or threshold value for neuron j that
can be regarded as the nonzero offset in the data, Hj is
the output of neuron j, and � is a parameter which
expresses the non-linearity of the neuron’s operation.

(3) Calculate the output Ok (the parameters to be
studied) at the output neuron k by equations similar to
Equs. (1) and (2).
(4) Calculate the correction factor (error) for all

weights in the output layer using its output value Ok

and the target output tk:

�kðtk � okÞokð1� okÞ ð3Þ

(5) Update weights on the output layer by Eqs. (4)
and (5):

wnewjk ¼ woldjk þ�wjkðpÞ ð4Þ

�wjkðpÞ ¼ ��kHj þ ��wjkðp � 1Þ ð5Þ

where�wij is the correction of the weight between hidden
layer neuron j and output neuron k, p and p-1 refer to the
present and previous cycles of correction, respectively.
The empirical parameters, �, is called the learning rate
and � is called the momentum.

�j ¼ Hjði � HjÞ
X

�kwjk ð6Þ

(6) Calculate the correction factor �j for the hidden layer:
(7) Update weights wij on the hidden layer based on Eqs.
(7) to (8):

wnewij ¼ woldij þ�wijðpÞ ð7Þ

�wijðpÞ ¼ ��jHi þ ��wijðp � 1Þ ð8Þ

(8) Return to the first step and repeat with a new input
example.
The iteration continues until the overall error between

calculated and target outputs is approaching to the
preset error criteria.
The BP algorithm, as mentioned above, was realized

through a software developed in Visual Basic 6.0 on the
platform of Microsoft Windows 98.9 The MNLR and the
ANN computation were carried out through this software.

1868 D. Guo et al. / Journal of the European Ceramic Society 22 (2002) 1867–1872



3. Experimental procedure

3.1. Experimental design and materials preparation

By adding Nb2O5, La2O3, Sm2O3, Co2O3 and Li2CO3
into BaTiO3, Qi Li et al have obtained a formulation
satisfying X7R specification.10 Among the additives
Co2O3 and Li2CO3 seem to be very critical in determin-
ing the performance of the system. Therefore this system
was selected and the influences of Co2O3 and Li2CO3 on
the performance of the system were mainly investigated.
For knowledge acquisition the homogenous experi-
mental design offers schemes for scientific experimental
design within the range of interest. Twenty one formula-
tions gained from homogenous experimental design11 act
as the training data set. Each was composed of six ingre-
dients and BaTiO3 content is fixed as 100%.
BaTiO3 and five additives were weighed, mixed by

ball milling and then after drying the powder was pres-
sed into disks. After being fired at 1280 �C for 4 h in
atmosphere the disks were paved with an Ag-electrode.
Temperature dependence of permittivity and loss prop-
erties of the samples were measured by a HP4192A
impedance analyzer in the temperature range of �55–
125 �C. Room temperature dielectric loss tgd, room
temperature permittivity "25, maximum TCC (tempera-
ture coefficient of capacitance) K (K=|"�"25|max/"25) in
the range of �55–125 �C are selected as the object out-
put. The ultimate results of the samples are list in Table 1.

3.2. Knowledge acquisition of the BaTiO3 system

Because BaTiO3 content is fixed, the ANN model is
composed of five neurons in the input layer and four neu-
rons in the output layer. An appropriate number of hid-
den neurons is an important factor determining the
network’s performance. From trials using different num-
bers of hidden neurons, 5–10, the minimum in root mean
square errors were obtained for 8 hidden neurons, there-
fore, the ANN model has an architecture as shown in
Fig. 1. The initial connection weights are set to be random
between �0.3 and +0.3. Within the neural network the
learning rate, the momentum factor and the convergence
error are set to be 0.15, 0.075 and 0.01, respectively.
Table 1 gives the training data set. Because a value

near 0 or 1 will lead to the ‘‘inaction’’ of the network,
the input data (all in mg) and the output data were
normalized to give values between around 0.05 and 0.95
prior to training through Eqs. (9) and (10).

X 0
i ¼ ðXi � X� iÞ=�

where;X� i ¼
Xp

i¼1

Xi; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXiX� iÞ

2

p

s
;Xi

ð9Þ

is the original input data, and p is the number of train-
ing samples. T
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Yi ¼ 0:05þ 0:90

Yi � Ymin

Ymax � Ymin
ð10Þ

where, Yi is the orginal input data, and Ymin, Ymax are
the minimum value and maximum one in the orginal
output data, respectively.

4. Results and discussion

4.1. Comparison of MNLR model and ANN model

In order to compare the accuracy between the ANN
and conventional methods, The entire training data set
(Table 1) was also used to develop MNLR models for
correlation between the four parameters and BaTiO3 for-
mulation. For example, the ultimate model of tg� and "25
can be expressed in Eqs. (11) and (12), respectively.

tg� ¼ �0:2338� ð1:5799E � 03Þ�Nb2O5

þ ð2:7261E � 03Þ�La2O3 þ 0:0332
�Sm2O3

� ð3:3571E � 04Þ�Co2O3 þ ð9:2345E � 03Þ�Li2CO3

þ ð2:4387E � 04Þ�Nb2O
�
5La2O3

þ ð8:7886E � 05Þ�Nb2O
�
5Sm2O3

� ð1:2898E � 03Þ�La2O
�
3Sm2O3

þ ð1:2593E � 04Þ�Co2O
�
3Li2CO ð11Þ

"25 ¼ 7869:9063� 234:0488
�Nb2O5 � 866:6985

�La2O3

� 266:8280�Sm2O3 � 338:1283
�Co2O3

� 35:9705�Li2CO3 þ 78:8240
�Nb2O

�
5La2O3

� 4:0792�Nb2O
�
5Sm2O3 þ 57:5871

�La2O
�
3Sm2O3

þ 9:6048�Co2O
�
3Li2CO3 ð12Þ

Where the additives are all expressed in mg and four
reciprocal effects are considered based on our previous
experiment results,10 i.e. Nb2O5*La2O3, Nb2O5*Sm2O3,
La2O3*Sm2O3, and Co2O3*Li2CO3. They contain 9
variables, five of which are independent. If other reci-
procal effects are to be considered, the equations of the
MNLR model will become more complicated. And the
equations will become much more complicated while
the accuracy of the model may show no change if the
ingredients of the formulation increase.
Tables 2 and 3 present the connection weights between

the input and hidden layers and the connection weights
between the hidden and output layers, respectively. The
calculated results comparing to observed results of "25 of
the 21 samples from MNLR and ANN models are illu-
strated in Figs. 2 and 3 respectively. Comparative predic-
tions between MNLR and ANN models characterized
through the root mean-square (RMS) error and the

Fig. 1. Schematic view of the BP network for BaTiO3 formulation model.

Table 2

Connection weights between the input and hidden layers

Nb2O5 La2O3 Sm2O3 Co2O3 Li2CO3 Input bias

h1 �4.496 �1.468 �0.816 2.014 �2.23 6.426

h2 1.317 0.492 0.495 0.168 �0.0662 1.398

h3 4.829 �1.348 1.020 �0.510 �0.250 0.761

h4 0.333 2.264 �3.141 0.723 �1.169 1.365

h5 �2.076 2.987 �0.516 0.641 1.913 0.030

h6 1.855 �2.959 2.705 �0.651 �1.647 �0.390

h7 0.530 �0.800 �0.738 �0.474 �1.616 1.567

h8 �2.038 �1.937 1.419 0.742 �2.524 �1.336

Table 3

Connection weights between the hidden and output layers

h1 h2 h3 h4 h5 h6 h7 h8 Hidden bias

tgd �4.306 0.444 0.544 �1.012 2.403 2.276 2.296 �2.342 �0.398

"25 �3.221 �6.664 1.081 2.472 �0.585 �1.184 �0.710 3.600 4.018

K �0.500 �0.823 2.355 �2.229 2.084 0.093 �3.463 0.431 0.385
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correlation coefficient are demonstrated in Table 4.
Apparently, the ANN approach gives much better pre-
dictions than the traditional method.

4.2. Graphical analysis of the correlation between
performance and formulation

By using a conventional method, in order to study the
relationship between a component and a parameter of
the formulation it is necessary to do some extra work.
For example, if we want to study the influence of Co2O3
on the permittivity of the system we have to fix the
concentration of other components and measure the
parameters of the samples having different Co2O3 con-
centration. The original experimental data can not be
utilized. However, by extracting the information of the
ANN model registered, we can express the framework

of the model in an intuitive way without any extra
experiment. Here the graphical analysis capability of the
ANN model is also illustrated. Based on our previous
results, the ratio of Nb2O5: La2O3: Sm2O3 at about 3:2:1
may generate a good dielectric performance. Therefore
we set the concentration of these three additives as 1.4
wt%, 0.8 wt% and 0.4 wt% respectively, then investi-
gated the influence of Co2O3 and Li2CO3 on the prop-
erties of the system. Double components analysis of
some parameters of the two additives were illustrated in
Fig. 4–7. From Fig. 4 we can see that at different Co2O3
content E25 shows a proportional relation with Li2CO3.
Fig. 5 indicates that at different Li2CO3 content �25
shows an inverse proportional relation with Co2O3.
Fig. 6 and 7 suggest that increase of Li2CO3 will lead to
the increase of TCC while increase of Co2O3 is helpful
in depressing TCC. These results are consistent with our

Fig. 3. Correlation between calculated and observed "25 by ANN

model.

Fig. 4. Graphical analysis of the correlation between "25 and Li2CO3.

Table 4

Comparison of predictive ability between ANN and MNLR model

MNLR model ANN model

tg� e25 K tg� "25 K

Correlation coefficient (R) 0.9835 0.9361 0.9086 0.9998 0.9998 0.9999

Root mean-square (RMS) 0.0044 382.78 20.93 0.0005 19.34 0.65

Fig. 2. Correlation between calculated and observed "25 by MNLR

model.

Fig. 5. Graphical analysis of the correlation between "25 and Co2O3.
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previous study.10 It is difficult for us to find out an
appropriate formulation having both high permittivity
and low TCC. This is mainly caused by the addition levels
of the additives selected. In fact, the addition level of
Co2O3 and Li2CO3 are set to be ten times larger than those
used in our previous study in order to precisely control the
concentration of the two reagents in the samples.

5. Conclusion

A relatively new computational tools ANN, a metho-
dology associated with nonlinear regression technique,

is used here in investigating the dielectric performance
of BaTiO3 based dielectric ceramics. Application of a
three-layer BP network modeling of the homogenous
experimental results and comparison of the accuracy of
the model with conventional MNLR model indicate
that ANN is a very useful tool in dealing with problems
with serious non-linearity encountered in complex for-
mulation design of dielectric ceramics. It deserves more
attention in the study of ceramics because of its unique
ability to learn from and to adapt to their environment,
and the ability to invoke weak assumptions about the
underlying physical phenomenon responsible for the
generation of the input data.
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